Swathi Changalarayappa

https://swathic5.github.io/ | https://www.linkedin.com/in/swathi-c/ | https://github.com/swathic5 swathi_c@tamu.edu | 979.571.2681

OBJECTIVE

Looking for an internship in the field of VLSI design/verification or computer architecture for Summer 2018 $\,$

MS thesis in High Performance Network on Chips. Part of High performance computing laboratory, Texas A&M University

EDUCATION

TEXAS A&M UNIVERSITY

MS IN COMPUTER ENGINEERING May 2019 | College Station, TX Cum. GPA: 4.0 / 4.0

NATIONAL INSTITUTE OF TECHNOLOGY KARNATAKA, SURATHKAL

BTECH IN ELECTRONICS AND COMMUNICATION ENGINEERING May 2014 | Surathkal, India Cum. GPA: 8.33 / 10.0

COURSEWORK

GRADUATE

Computer Architecture Microprocessor Systems Design Digital Integrated Circuits Design Computer Arithmatic Unit Design Analysis of Algorithms Hardware Security

UNDERGRADUATE

Digital system design Linear integrated circuits VLSI design Logic synthesis and techniques VLSI design and automation

SKILLS

PROGRAMMING

Verilog • VHDL • C • C++ • Perl • TCL • Python

TOOLS

Cadence NCSIM • Magillem • Spyglass Atrenta • Autogen • MATLAB

PROFESSIONAL EXPERIENCE

TEXAS INSTRUMENTS | DESIGN ENGINEER

July 2014 – July 2017 | Bangalore, India

Design and Verification

- Designed instruction cache block in Verilog by interacting with architects and other design groups
- Performed CPF based low power functional verification and coverage analysis at RTL and gate level verification of SOC, released to production
- Designed glue-logic using verilog RTL, enabling expected functionality between IPs at SOC level
- \cdot Gained expertise in IPXACT 1685 standards while integrating IPs using Magillem tool
- $\cdot\,$ Achieved high quality SOC RTL handoff to synthesis team using spyglass Lint tool
- Performed logic equivalence check between RTL and synthesis/post-layout netlists achieving zero bugs

METHODOLOGY DEVELOPMENT AND IMPROVEMENT

- Verified isolation correctness using checkers for low power designs leading to zero isolation bugs on production chip using perl scripting
- + Identified automated checks to enable quality IP RTL handoff to SOC

ARCHITECTURE

- Analyzed architecture of instruction cache to improve performance by 21% for industrial benchmarks Coremark and Dhrystone
- Estimated RTL based power using Cadence Joules to determine power/performance trade-off for cache configurations

TEXAS INSTRUMENTS | INTERN

May 2013 – July 2013 | Bangalore, India

• Improved simulation time by 40% by performing Checkpoint simulation at SOC, method of creating snapshot using Cadence NCSIM simulator

ACADEMIC PROJECTS

PERCEPTRON BASED CACHE REUSE PREDICTION FOR LL CACHE IN C++ November 2017 | Texas A&M University

Implemented dead block predictor for last level caches. Speedup achieved: 6.4% over LRU. The algorithm learns from few sampled sets and generalizes over entire cache to save area and power.

ITTAGE - INDIRECT BRANCH PREDICTOR IN C++

October 2017 | Texas A&M University Implemented ITTAGE to predict indirect branch targets improving performance by 93%. Enhanced the original implementation to achieve an additional speed up of 5.3%

HARDWARE SOFTWARE CO-DESIGN November 2017 | Texas A&M University Developed a device driver in Linux to decode and display IR signal using Xilinx FPGA

ELEVATOR DESIGN ON SPARTAN FPGA November 2012 | NITK Surathkal Realized elevator control system for 4 floors with power conservation

Realized elevator control system for 4 floors with power conservation and safety features on Spartan FPGA using state machines